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We are concerned with an approximation problem by polynomial spline func­
tions with one free knot. Our main concern is a second-order property of the
problem with respect to the knot. We show that every spline function satisfying
Braess's alternation condition is nearly optimal. (0 1994 Academic Press. Inc.

1. INTRODUCTION

We deal with a Tchebycheff approximation problem of a prescribed
continuous function f{t) by polynomial spline functions with one free
knot:

minimize SeX) := max{lf(t) - F(x,t)l; t E [0, I]},
n

F(x,t) = Exjt j +xn+1(t - 0:,
j~O

(1 )

(2)

In the following, we put 0 = to ~ t 1 = t ~ t2 = 1 and we assume that
n ~ 3. Braess [1, Cor. 3.5) gave a necessary condition for F(x*, t) to be a
local best approximation (S(x*) ~ S(x) on some neighborhood of x*).
His condition asserts that the error function r(t) := f{t) - F(x*, t) alter­
nates at least n + 2(q - p) - 1 times in some interval [tp ' t q ). The aim of
this paper is to show that every spline function which satisfies Braess'
condition is nearly optimal in the sense that

o~ S" (x* ; y) ~ + 00 for all y E R n+3 s.t. S'(x*; y) = 0, (3)
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where S'(x*; y) denotes the directional derivatives of S(x) in the direc­
tion y and

. S( x* + 0 y) - S( x*) - OS' (x* ; y)
S"(x*; y):= hm (4)

(1--. +0 0 2

When the limit in (4) does not exist, we denote the upper limit by
S"(x*; y).

2. SECOND-ORDER PROPERTY

First, we explain our notation. We denote by Fx and Fxx the gradient
vector and the Hesse matrix of F W.r.t. x, respectively. We denote by
T(x) the set of all extreme points of the error function, that is, T(x*) :=

{t E [0,1]; !r{t)! = S(x*)}. A vector y is said to be critical if S'(x*; y) = O.
Next, we remark that Braess's condition is equivalent to that there exist

extreme points 0:5: t,:5: ... :5: t n + 4 :5: 1 and At , ••• ,A n + 4 ~ ° not all
zero such that

n +4

I: A;O'(t;)FAx*,U = 0,
i~1

(5)

where O'{t) denotes the sign of the error function. This fact can be proved
by Caratheodory's theorem, Cramer's formula and Karlin-Ziegler's theo­
rem [5, Thm. 1 and 2].

THEOREM 1. Suppose that condition (5) is satisfied at x*. Then

(6)

for any critical direction y E R"+3.

Proof It follows from (2) that condition (5) amounts to

n+4

L: A;O'(t;)t; = 0, k = 0, ... , n;
;~ I

n+4

I: A;O'(t;)(t; - 0: = 0,
i~1

k = n - 1, n.

(7)



Hence we have
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(

n+4 ) n+4

yT i~1 Ai17 (t;)FxX<X*, til y = n(n - 1)x~+IY~+2 i~1 Ai17(ti)(t; - ~t+-2

(8)

for any y. Therefore (6) is trivial when x~ + I = O. When x~ + 1 *- 0, (6) is
easily derived in the case where ~ ~ t 3 or tn + 2 ~~. In the case of
t 3 < { < t n + 2' it can be shown that zero vector is the unique critical
direction. Indeed, we see by Karlin-Ziegler's theorem that all (n + 3) X

(n + 3)-submatrices of the coefficient matrix of (5) are non-singular.
Hence all A;'s are positive. On the other hand, it holds for any critical
direction y that

O=S'(x*;y) = max{-I7(t)FAx*,t)y;t E T(x*)}; (9)

see, e.g., Girsanov [4, Ex. 7.5]. Hence, we have

i=I, ... ,n+4. ( 10)

Combining (5) and (10), we have A;I7<t)Fx(x, t)y = 0 for all i. Since
rank{F)x*, t); i = 1, ... , n + 4} = n + 3, we get that y = O.

THEOREM 2. Suppose that Braess's condition is satisfied at x*. Then

o ~ .5"(x *; y) ~ +00 (11 )

for any critical direction y. Moreover, if the error function is expanded into
Taylor series as

for some a *- 0, k > 0, (12)

at its zero points, then 0 ~ S"(x*; y) ~ + 00.

Proof Let y be any critical direction. It follows from Theorem 1 that

(13)

for some T E T(x*) such that F)x*, T)y = 0; see the argument after (l0).
Next, we put

u( t, (7) := S( x*) - 17{f(t) - F( x* , t)}, V(t,I7):= I7FAx*,t)y,

(14)

and we denote by .9{J the set of all (t, (7) E [0,1] X {t, -l} for which there
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(15)

exists a sequence (tn' (Tn) E [0, 1] X {I, - l} converging to (t, (T) such that

. u(tfl,(Tn)
hm - = +00.

f1~+'" U(tfl,(TfI)

We define a function E: [0,1] X {l, - I} ~ [ - 00, + 00] as follows:

0, ifu(t,(T) =u(t,(T) = oand (t,(T) tt.'?;),

- 00, otherwise

Then it follows from Theorem 2.2. in Kawasaki [6] that

5"(x;y) = max{-t(T(t)yTFxAx,t)y + E(t,(T(t»; FAx*,t)y = OJ.
(17)

Since u( T, (Ter» = u( T, (T( T» = 0, we have 0 :0; E{t, u(t):o; + 00. Hence,

(18)

Combining (17) and (18), we get (11). Furthermore, it was shown in
Theorem 4.3 of [6] that 5"(x; y) = SI/(x; y) if r(t) satisfies the assumption
(12).

We close this paper with noting Mulansky's results [7]. Recently, Mulan­
sky improved Braess's condition by utilizing Cromme's results [2, 3] on a
tangent cone. Mulansky's condition is in general superior to Braess'
condition. However, in our simple context, Mulansky's condition coincides
with Braess' condition, because the tangent cone is a subspace.
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