Note

A Second-Order Property of Spline Functions with One Free Knot

Hidefumi Kawasaki

Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan
Communicated by Günther Nürnberger
Received October 14, 1992; accepted in revised form June 25, 1993

Abstract

We are concerned with an approximation problem by polynomial spline functions with one free knot. Our main concern is a second-order property of the problem with respect to the knot. We show that every spline function satisfying Braess's alternation condition is nearly optimal. © 1994 Academic Press, Inc.

1. Introduction

We deal with a Tchebycheff approximation problem of a prescribed continuous function $f(t)$ by polynomial spline functions with one free knot:

$$
\begin{gather*}
\operatorname{minimize} \quad S(x):=\max \{|f(t)-F(x, t)| ; t \in[0,1]\} \tag{1}\\
F(x, t)=\sum_{j=0}^{n} x_{j} t^{j}+x_{n+1}(t-\xi)_{+}^{n} \\
x=\left(x_{0}, x_{1}, \ldots, x_{n+1}, \xi\right) \in R^{n+3} . \tag{2}
\end{gather*}
$$

In the following, we put $0=\xi_{0} \leq \xi_{1}=\xi \leq \xi_{2}=1$ and we assume that $n \geq 3$. Braess [1, Cor. 3.5] gave a necessary condition for $F\left(x^{*}, t\right)$ to be a local best approximation ($S\left(x^{*}\right) \leq S(x)$ on some neighborhood of x^{*}). His condition asserts that the error function $r(t):=f(t)-F\left(x^{*}, t\right)$ alternates at least $n+2(q-p)-1$ times in some interval $\left[\xi_{p}, \xi_{q}\right]$. The aim of this paper is to show that every spline function which satisfies Braess' condition is nearly optimal in the sense that

$$
\begin{equation*}
0 \leq S^{\prime \prime}\left(x^{*} ; y\right) \leq+\infty \quad \text { for all } y \in R^{n+3} \text { s.t. } S^{\prime}\left(x^{*} ; y\right)=0 \tag{3}
\end{equation*}
$$

where $S^{\prime}\left(x^{*} ; y\right)$ denotes the directional derivatives of $S(x)$ in the direction y and

$$
\begin{equation*}
S^{\prime \prime}\left(x^{*} ; y\right):=\lim _{\theta \rightarrow+0} \frac{S\left(x^{*}+\theta y\right)-S\left(x^{*}\right)-\theta S^{\prime}\left(x^{*} ; y\right)}{\theta^{2}} . \tag{4}
\end{equation*}
$$

When the limit in (4) does not exist, we denote the upper limit by $\bar{S}^{\prime \prime}\left(x^{*} ; y\right)$.

2. Second-Order Property

First, we explain our notation. We denote by F_{x} and $F_{x x}$ the gradient vector and the Hesse matrix of F w.r.t. x, respectively. We denote by $T(x)$ the set of all extreme points of the error function, that is, $T\left(x^{*}\right):=$ $\left\{t \in[0,1] ;|r(t)|=S\left(x^{*}\right)\right\}$. A vector y is said to be critical if $S^{\prime}\left(x^{*} ; y\right)=0$.

Next, we remark that Braess's condition is equivalent to that there exist extreme points $0 \leq t_{1} \leq \cdots \leq t_{n+4} \leq 1$ and $\lambda_{1}, \ldots, \lambda_{n+4} \geq 0$ not all zero such that

$$
\begin{equation*}
\sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right) F_{x}\left(x^{*}, t_{i}\right)=0 \tag{5}
\end{equation*}
$$

where $\sigma(t)$ denotes the sign of the error function. This fact can be proved by Carathéodory's theorem, Cramer's formula and Karlin-Ziegler's theorem [5, Thm. 1 and 2].

Theorem 1. Suppose that condition (5) is satisfied at x^{*}. Then

$$
\begin{equation*}
y^{\mathrm{T}}\left(\sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right) F_{x x}\left(x^{*}, t_{i}\right)\right) y=0 \tag{6}
\end{equation*}
$$

for any critical direction $y \in R^{n+3}$.
Proof. It follows from (2) that condition (5) amounts to

$$
\begin{gather*}
\sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right) t_{i}^{k}=0, k=0, \ldots, n ; \tag{7}\\
\sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right)\left(t_{i}-\xi\right)_{+}^{k}=0, \quad k=n-1, n .
\end{gather*}
$$

Hence we have

$$
\begin{equation*}
y^{\mathrm{T}}\left(\sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right) F_{x x}\left(x^{*}, t_{i}\right)\right) y=n(n-1) x_{n+1}^{*} y_{n+2}^{2} \sum_{i=1}^{n+4} \lambda_{i} \sigma\left(t_{i}\right)\left(t_{i}-\xi\right)_{+}^{n-2} \tag{8}
\end{equation*}
$$

for any y. Therefore (6) is trivial when $x_{n+1}^{*}=0$. When $x_{n+1}^{*} \neq 0,(6)$ is easily derived in the case where $\xi \leq t_{3}$ or $t_{n+2} \leq \xi$. In the case of $t_{3}<\xi<t_{n+2}$, it can be shown that zero vector is the unique critical direction. Indeed, we see by Karlin-Ziegler's theorem that all $(n+3) \times$ ($n+3$)-submatrices of the coefficient matrix of (5) are non-singular. Hence all λ_{i} 's are positive. On the other hand, it holds for any critical direction y that

$$
\begin{equation*}
0=S^{\prime}\left(x^{*} ; y\right)=\max \left\{-\sigma(t) F_{x}\left(x^{*}, t\right) y ; t \in T\left(x^{*}\right)\right\} \tag{9}
\end{equation*}
$$

see, e.g., Girsanov [4, Ex. 7.5]. Hence, we have

$$
\begin{equation*}
\sigma\left(t_{i}\right) F_{x}\left(x^{*}, t_{i}\right) y \geq 0, \quad i=1, \ldots, n+4 \tag{10}
\end{equation*}
$$

Combining (5) and (10), we have $\lambda_{i} \sigma\left(t_{i}\right) F_{x}\left(x, t_{i}\right) y=0$ for all i. Since $\operatorname{rank}\left\{F_{x}\left(x^{*}, t_{i}\right) ; i=1, \ldots, n+4\right\}=n+3$, we get that $y=0$.

Theorem 2. Suppose that Braess's condition is satisfied at x^{*}. Then

$$
\begin{equation*}
0 \leq \bar{S}^{\prime \prime}\left(x^{*} ; y\right) \leq+\infty \tag{11}
\end{equation*}
$$

for any critical direction y. Moreover, if the error function is expanded into Taylor series as

$$
\begin{equation*}
r(t)=\alpha(t-\tau)^{k}+o\left(|t-\tau|^{k}\right) \quad \text { for some } \alpha \neq 0, k>0 \tag{12}
\end{equation*}
$$

at its zero points, then $0 \leq S^{\prime \prime}\left(x^{*} ; y\right) \leq+\infty$.
Proof. Let y be any critical direction. It follows from Theorem 1 that

$$
\begin{equation*}
-\sigma(\tau) y^{T} F_{x x}\left(x^{*}, \tau\right) y \geq 0 \tag{13}
\end{equation*}
$$

for some $\tau \in T\left(x^{*}\right)$ such that $F_{x}\left(x^{*}, \tau\right) y=0$; see the argument after (10). Next, we put

$$
\begin{equation*}
u(t, \sigma):=S\left(x^{*}\right)-\sigma\left\{f(t)-F\left(x^{*}, t\right)\right\}, \quad v(t, \sigma):=\sigma F_{x}\left(x^{*}, t\right) y \tag{14}
\end{equation*}
$$

and we denote by \mathscr{T}_{0} the set of all $(t, \sigma) \in[0,1] \times\{1,-1\}$ for which there
exists a sequence $\left(t_{n}, \sigma_{n}\right) \in[0,1] \times\{1,-1\}$ converging to (t, σ) such that

$$
\begin{equation*}
u\left(t_{n}, \sigma_{n}\right)>0 \forall n, \quad \lim _{n \rightarrow+\infty}-\frac{v\left(t_{n}, \sigma_{n}\right)}{u\left(t_{n}, \sigma_{n}\right)}=+\infty \tag{15}
\end{equation*}
$$

We define a function $E:[0,1] \times\{1,-1\} \rightarrow[-\infty,+\infty]$ as follows:

$$
E(t, \sigma):= \begin{cases}\sup \left\{\begin{array}{l}
\left.\lim \sup \frac{v\left(t_{n}, \sigma_{n}\right)^{2}}{4 u\left(t_{n}, \sigma_{n}\right)} ;\left\{\left(t_{n}, \sigma_{n}\right)\right\} \text { satisfies }(15)\right\} \\
\\
\text { if }(t, \sigma) \in \mathscr{F}_{0}
\end{array}\right. \tag{16}\\
0, & \text { if } u(t, \sigma)=v(t, \sigma)=0 \text { and }(t, \sigma) \notin \mathscr{F}_{0} \\
-\infty, & \text { otherwise }\end{cases}
$$

Then it follows from Theorem 2.2. in Kawasaki [6] that

$$
\begin{equation*}
\bar{S}^{\prime \prime}(x ; y)=\max \left\{-\frac{1}{2} \sigma(t) y^{\mathrm{T}} F_{x x}(x, t) y+E(t, \sigma(t)) ; F_{x}\left(x^{*}, t\right) y=0\right\} \tag{17}
\end{equation*}
$$

Since $u(\tau, \sigma(\tau))=v(\tau, \sigma(\tau))=0$, we have $0 \leq E(t, \sigma(t)) \leq+\infty$. Hence,

$$
\begin{equation*}
-\sigma(\tau) y^{\mathrm{T}} F_{x x}\left(x^{*}, \tau\right) y+2 E(\tau, \sigma(\tau)) \geq 0 \tag{18}
\end{equation*}
$$

Combining (17) and (18), we get (11). Furthermore, it was shown in Theorem 4.3 of [6] that $\bar{S}^{\prime \prime}(x ; y)=S^{\prime \prime}(x ; y)$ if $r(t)$ satisfies the assumption (12).

We close this paper with noting Mulansky's results [7]. Recently, Mulansky improved Braess's condition by utilizing Cromme's results $[2,3]$ on a tangent cone. Mulansky's condition is in general superior to Braess' condition. However, in our simple context, Mulansky's condition coincides with Braess' condition, because the tangent cone is a subspace.

Acknowledgments

The author thanks Professor N. Furukawa for many years' advice and encouragement. He is also grateful to the referee for pointing out recent important results.

References

1. D. Braess, Chebyshev approximation by spline functions with free knots, Numer. Math. 17 (1971), 357-366.
2. L. J. Cromme, Regular C^{1}-parametrization for exponential sums and splines, J. Approx. Theory, 35 (1982), 30-44.
3. L. J. Cromme, A unified approach to differential characterizations of local best approximations by exponential sums and splines, J. Approx. Theory, 36 (1982), 294-303.
4. I. V. Girsanov, "Lectures on Mathematical Theory of Extremum Problems," Springer, New York, 1972.
5. S. Karlin and Z. Ziegler, Tchebycheffian spline functions, SlaM J. Numer. Anal. Ser. B 3 (1966), 514-543.
6. H. Kawasaki, The upper and lower second order directional derivatives of a sup-type function, Math. Programming 41 (1988), 327-339.
7. B. Mulansky, Chebyshev approximation by spline functions with free knots, IMA J. Numer. Anal. 12 (1992), 95-105.
